Klotho Depletion Contributes to Increased Inflammation in Kidney of the db/db Mouse Model of Diabetes via RelA (Serine)536 Phosphorylation

نویسندگان

  • Yanhua Zhao
  • Srijita Banerjee
  • Nilay Dey
  • Wanda S. LeJeune
  • Partha S. Sarkar
  • Reynolds Brobey
  • Kevin P. Rosenblatt
  • Ronald G. Tilton
  • Sanjeev Choudhary
چکیده

OBJECTIVE Klotho is an antiaging hormone present in the kidney that extends the lifespan, regulates kidney function, and modulates cellular responses to oxidative stress. We investigated whether Klotho levels and signaling modulate inflammation in diabetic kidneys. RESEARCH DESIGN AND METHODS Renal Klotho expression was determined by quantitative real-time PCR and immunoblot analysis. Primary mouse tubular epithelial cells were treated with methylglyoxalated albumin, and Klotho expression and inflammatory cytokines were measured. Nuclear factor (NF)-κB activation was assessed by treating human embryonic kidney (HEK) 293 and HK-2 cells with tumor necrosis factor (TNF)-α in the presence or absence of Klotho, followed by immunoblot analysis to evaluate inhibitor of κB (IκB)α degradation, IκB kinase (IKK) and p38 activation, RelA nuclear translocation, and phosphorylation. A chromatin immunoprecipitation assay was performed to analyze the effects of Klotho signaling on interleukin-8 and monocyte chemoattractant protein-1 promoter recruitment of RelA and RelA serine (Ser)(536). RESULTS Renal Klotho mRNA and protein were significantly decreased in db/db mice, and a similar decline was observed in the primary cultures of mouse tubule epithelial cells treated with methylglyoxal-modified albumin. The exogenous addition of soluble Klotho or overexpression of membranous Klotho in tissue culture suppressed NF-κB activation and subsequent production of inflammatory cytokines in response to TNF-α stimulation. Klotho specifically inhibited RelA Ser(536) phosphorylation as well as promoter DNA binding of this phosphorylated form of RelA without affecting IKK-mediated IκBα degradation, total RelA nuclear translocation, and total RelA DNA binding. CONCLUSIONS These findings suggest that Klotho serves as an anti-inflammatory modulator, negatively regulating the production of NF-κB-linked inflammatory proteins via a mechanism that involves phosphorylation of Ser(536) in the transactivation domain of RelA.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Periodontitis aggravated pancreatic β‐cell dysfunction in diabetic mice through interleukin‐12 regulation on Klotho

AIMS/INTRODUCTION Recent studies have shown that periodontitis can contribute to adipose tissue inflammation and subsequent systemic insulin resistance in the obese rat model. However, the related inflammatory mechanism is not yet clear. The present study aims to investigate the effects of periodontitis on the function of pancreatic β-cells with pro-inflammatory cytokines-related immune mechani...

متن کامل

Progressive glomerulosclerosis in type 2 diabetes is associated with renal histone H3K9 and H3K23 acetylation, H3K4 dimethylation and phosphorylation at serine 10.

BACKGROUND Distinct histone modifications regulate gene expression in certain diseases but little is known about histone epigenetics in diabetic nephropathy. The current study examined the role of histone epigenetics in development and progression of nephropathy in db/db mice. METHODS We studied kidney damage in 6-month-old non-diabetic mice and type 2 diabetic db/db mice that underwent eithe...

متن کامل

In Vivo Pancreatic β-Cell–Specific Expression of Antiaging Gene Klotho: A Novel Approach for Preserving β-Cells in Type 2 Diabetes

Protein expression of an antiaging gene, Klotho, was depleted in pancreatic islets in patients with type 2 diabetes mellitus (T2DM) and in db/db mice, an animal model of T2DM. The objective of this study was to investigate whether in vivo expression of Klotho would preserve pancreatic β-cell function in db/db mice. We report for the first time that β-cell-specific expression of Klotho attenuate...

متن کامل

Deficient eNOS phosphorylation is a mechanism for diabetic vascular dysfunction contributing to increased stroke size.

BACKGROUND AND PURPOSE Phosphorylation of eNOS, an important post-translational modulator of its enzymatic activity, is reduced in diabetes mellitus. We hypothesized that modulation of eNOS phosphorylation could overcome diabetic vascular dysfunction and improves the outcome to stroke. METHODS We used the db/db mouse model of type 2 diabetes mellitus. We mated db/db mice with eNOS knock-in mi...

متن کامل

Hydrogen sulfide improves vessel formation of the ischemic adductor muscle and wound healing in diabetic db/db mice

Objective(s): It has been demonstrated that hydrogen sulfide plays a vital role in physiological and pathological processes such as regulating inflammation, oxidative stress, and vessel relaxation. The aim of the study was to explore the effect of hydrogen sulfide on angiogenesis in the ischemic adductor muscles of type 2 diabetic db/db mice and ischemic diabetic wound...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره 60  شماره 

صفحات  -

تاریخ انتشار 2011